Knock Counts and Spark Retard Degrees – AUJP $8d

Tom Oliphint (84Elky), [Version 3] May 30, 2013
*************** Not for Commercial Use ****************
* FOR EDUCATIONAL PURPOSES ONLY, USE AT YOUR OWN RISK *
*************** Not for Commercial Use ****************
Corrections to this document since the initial release January 10,1013 are provided at the end of the text and can be accessed with the “Corrections” link below.
The purpose of this writing is to document how Knock Counts are used in determining Spark Retard Degrees, and then how those Spark Retard Degrees are used to retard Total Spark Advance. It’s not exactly light reading and may be meaningless to anyone else, but to me it’s important because it satisfies my curiosity about how the code works and what it does.

A summary of the analysis is first provided followed by the details of each relevant area of the code.

Document Links

 Document Text
Summary

Low Octane Fuel
Low Octane Spark Retard
Power Enrich (Forced) Knock Test
Spark Minor Loop

Subroutine LSEG_8 (Low Octane Spark Retard Modifier)
Code Execution Time-line
Subroutine LSEG_A (Decay of Knock Retard Degrees)
Corrections
 Flowcharts

Subroutine LSEG_8

Low Octane Spark Retard
Negative Total SA-REF

Subroutine LSEG_A
 Flowcharted Code Segments

Subroutine LSEG_8

Low Octane Spark Retard
Negative Total SA-REF

Subroutine LSEG_A
 Simulation Data

Low Octane Spark Retard
Negative Total SA-REF
LSEG_A KR Decay
Preliminaries and Definitions

Preliminaries
Throughout this document, reference is made to labels (data names) used in JP’s AUJP $8d Assembly language hack (found here: http://gearhead-efi.com/gearhead-efi/moates/moates_files/5)%20Source%20Code%20and%20Hacks/).

These labels are of the form ‘Lxxxx’, where ‘xxxx’ is the hexadecimal address of a data variable in the data area of the code, or the address of a Calibration variable in the 0x8000 area:

· L8xxx Calibration values are generally accessible via a XDF file in TunerPro, TunerCat, etc, although some cannot be accessed that way. They must be accessed via a hex editor or by modifying the XDF file to include the variable. For example, ‘L822F=Low Octane Knock Multiplier .vs. RPM’ points to a Calibration Table, and 0x822F is the address of the first element in that Table.
· All other Lxxxx values refer to data variables used in the code and are not available via a XDF file. For example, ‘L00C4=Current KR Degrees’ is a data variable in the code, and 0x00C4 is the address of that variable.
· Calibration values referenced are those of the Stock AUJP $8d mask unless otherwise noted.

· ‘0x’ and ‘$’ are used interchangeably to indicate a hexadecimal value.

· MSB and LSB, respectively, refer to Most Significant Byte and Least Significant Byte of a 2-byte value.

Definitions

KC
= Knock Count

KR
= Knock Retard

LOSR = Low Octane Spark Retard

PE
= Power Enrichment

REF
= Relative to Reference Pulses
SA
= Spark Advance

SR
= Spark Retard

TDC
= Relative to Top Dead Center

TPS
= Throttle Position Sensor

ms
= Milliseconds
--

Summary

Before beginning the Summary, it is necessary to describe the types of Spark Retard Degrees and then discuss them separately:

· Low Octane Spark Retard Degrees, which are a special case of spark retardation (hereafter referred to as “LOSR Degrees”)
· All other Knock Retard Degrees (hereafter called “KR Degrees”)

This is already getting complicated and we’ve barely started.

This Summary covers:

· Knock Counts
· Spark Retard Degrees (KR Degrees and LOSR Degrees):
· Origin
· Usage

· Decay
Knock Counts (KCs)
· KCs are KCs regardless of source: normally occurring KCs, Low Octane fuel KCs, or those that may be forced to occur under the Power Enrich (Forced) Knock Test. The ECM has no knowledge of what causes a knock. It merely deals with what it gets from the knock sensor.

· KCs used by the code are not those reported in the ALDL stream (i.e. - in Logs). Another, larger and unreported, value is used (actual counts sensed). KCs reported in the ALDL data stream are stored in ‘L00C1=Current Knock Count’ while actually-sensed KCs are stored in the LSB of LC0C1, L00C2 (an undefined variable). See this link for details: http://www.thirdgen.org/techboard/diy-prom/669616-solved-knock-retard-reported.html.
Origin of Spark Retard
· KR Degrees
· Are calculated from KCs and stored in the variable ‘L00C4=KR Degrees’. KC’s are also used to set certain bit-flags to discontinue the Forced Knock Test. That’s it! So that means KR Degrees derived from KCs are important.

· Once KCs are encountered, they are always set to the minimum of:

· A Table value of Maximum Allowed KR Degrees (in PE or not-in-PE), or

· KR Degrees adjusted downward by an Attack Rate Adjustment Factor.

· LOSR Degrees
· Are computed on-the-spot using a calculated LOSR “Modifier” variable and Calibration Table values (see Subroutine LSEG_8 Low Octane Spark Modifier for calculation details). After calculation, the LOSR Degrees are discarded. Because they are not saved, there is no variable name assigned to them.
· The final calculated value of the LOSR Modifier is also indirectly influenced by KR Degrees.

Now even more complicated and were not even out of the Summary.
Usage of Spark Retard
· There are two Total SA values that may be retarded:

· Relative to Top Dead Center (Total SA-TDC)

· Relative to Distributor Reference Pulses (Total SA-REF)

· Procedurally, Total SA-TDC is calculated first by summing several SA elements, followed by possible adjustments. An example of an adjustment is decreasing or increasing Total SA-TDC for RPM variances above or below a certain RPM threshold.

· Once Total SA-TDC is determined, Total SA-REF is calculated by subtracting the Initial Spark Advance (Distributor setting) set in the Calibration.

· As long as KR Degrees or LOSR Degrees are > 0, Total SA will be retarded - but which Total?
· KR Degrees
· Used to retard ONLY Total SA-REF. Interestingly, there is no recalculation of Total SA-TDC, upon which Total SA-REF was originally based.
· The KR Degrees logic is found in the code at the areas labeled:

· SCALE & DO LOW OCTANE S.A. RETARD (In the Spark Minor Loop)
· LSEG_A (a Subroutine - Decay of Knock Retard Degrees)
· LOSR Degrees
· Used to retard ONLY Total SA-TDC
· Used in the following code areas:
· LSEG_8 (a Subroutine - LOSR Modifier)
· SCALE & DO LOW OCTANE S.A. RETARD (In the Spark Minor Loop)
Decay of Spark Retard
· KR Degrees
· Accumulate quickly but are reduced (decayed out) very slowly.

· Are decayed to zero using a KR Recovery Rate factor from a Calibration Table in Subroutine LSEG_A. And it is important for KR Degrees to be decayed to zero as soon as possible. For as long as KR Degrees exist, Total SA-REF will be retarded.

· LOSR Degrees
· LOSR Degrees are not accumulated or decayed as are KR Degrees.

· Because LOSR Degrees are calculated on-the-spot from several variables, it can vary each time the calculation is made. Retardation only ceases when one of the comprising variables = 0 (again see Subroutine LSEG_8 Low Octane Spark Modifier for calculation details).
--

Low Octane Fuel

It appears GM wanted a way to retard Total SA-TDC if the engine was operating at a relatively high kPa load, and where the load was not increasing and was relatively constant - like going up a consistent grade at constant throttle.

Spark retard truly due to Low Octane fuel is a special case of retard that can arise only if several stringent conditions are met (see Subroutine LSEG_8).
In summary, the Low Octane logic works like this:
Subroutine LSEG_8 – A value, (the LOSR “Modifier”), is calculated for later use. This value is important in determining LOSR Degrees (see Subroutine LSEG_8 for details).
· SCALE & DO LOW OCTANE S.A. RETARD –The LOSR Modifier, calculated in Subroutine LSEG_8, is used to calculate how much to retard Total SA-TDC. (see SCALE & DO LOW OCTANE S.A. RETARD).
Note there will be no reduction of Total SA-TDC if either of the following occurs:

· The LOSR Modifier calculated in Subroutine LESG_8 = 0.
· In the SCALE & DO LOW OCTANE S.A. RETARD logic, the value extracted from the ‘L822F=Low Octane KNOCK Mult .vs. RPM’ Table = 0 because MAP was <= 35 kPa when the Table was accessed.

The Low Octane logic can be disabled, but doing so is questionable because so many restrictive conditions need to be met for it to be invoked (see Subroutine LSEG_8 “LOSR Modifier”). Moreover, disabling the Low Octane logic will not prevent KCs from being detected as a result of low octane fuel, but will ensure that Total SA will not be retarded appropriately when perhaps it should be.
--

Before beginning the detailed discussion of code segments, it’s appropriate to list the high points of the Spark Logic that affects Total SA, KCs and KR Degrees since several areas of that logic are referenced in the discussion.

EST Spark Timing (called the Spark Minor Loop in the code)
The Spark Minor Loop is a section of code that determines the Spark parameters needed by the ECM. What follows is a high level flow of that logic. It is executed every 12.5ms, or 80 times a second (Note: Only major steps are listed):

1. If coolant temperature is > 95 °C (203 °F), allow Forced Knock SA to be added to Total SA-TDC in Step 2 below.

2. Sum Spark Degrees components, where applicable, to create Total SA-TDC:
+ Forced Knock SA (previously calculated)

+ Forced Knock SA (added twice – see Power Enrich (Forced) Knock Test)
+ Power Enrich SA
+ Highway Mode SA
+ Coolant Temp Adjusted SA
+ Main SA (either Closed Throttle Table, or Main or Extended SA Tables,
 depending upon TPS % and RPM):
· If TPS > 1.2%

· (0 – 4800 RPM) – Use Main Spark Table
· (4800+ RPM) - Use Extended Spark Table
· If TPS <= 1.2%

· Use Closed Throttle Main SA .vs. RPM Table
+ Hot Restart SA
3. Adjust Total SA-TDC if applicable:
· If idling (TPS < 1.2 %), add or subtract any Idle RPM SA variance:
· Advance SA if RPM lower than RPM threshold.
· Retard SA if RPM higher than RPM threshold.
· Subtract the Constant ‘SA Bias for Base Coolant SA Table’. This value neutralizes the SA added in Step 2 from the ‘Coolant Temp Adjusted SA’ Table. The net effect of adding the Table value and subtracting this Constant is zero, unless coolant temperature is at an extreme. This occurs because the Constant equals all but “extreme” temperature values in the Table.
· Subtract any adjustment for LOSR Degrees.
4. ‘L0128=Total SA-TDC’ has now been determined in Steps 2 and 3 above.
5. Compute ‘L00BB=Total SA-REF’:
· Subtract Distributor Setting (Initial SA set in the Calibration) from Total SA-TDC.
· If, after subtracting the Distributor Setting, Total SA-REF is > 41.84 degrees, Total SA-REF is set equal to 41.84 degrees.
6. Get KCs from the Knock Sensor.
7. If certain temperature, RPM and MPH conditions are met, but without regard to whether or not there are currently any KCs or KR Degrees, determine the value of KR Degrees. There are two possibilities:
a. Use a RPM based Table value, ‘Knock Attack Rate .vs. RPM’. This value is
 multiplied by L00C2 KCs to calculate Adjusted KR Degrees:
 Adjusted KR Degrees = (L00C2 KCs) * (Table Attack Rate Factor)
 The result of the calculation is saved for later use, and:
· Will = zero if L00C2 KC = zero.
· Else, will =
 (L00C2 KC) * (Table Attack Rate Factor) * 2 [Note “* 2”]
If the product of the above multiplication is > $FF, Adjusted KR Degrees is set equal to $FF.
b. Get maximum allowed KR Degrees from a Table:

· If in PE:
 Max Knock Retard While In Pwr Enrich .vs. RPM
· If not in PE: Max Knock Retard While Not In Pwr Enrich .vs. MAP

8. Set ‘Current KR Degrees’ equal the minimum of the two values in Step 7 above.
9. Reduce Total SA-REF calculated in Step 5 by the ‘Current KR Degrees’ value saved in Step 8.
10. If KCs obtained in Step 6 are > 0, set bit-flags to discontinue the Power Enrich (Forced) Knock Test, as the test is deemed to have passed.
11. If Total SA-REF is:

· Positive - Apply the current ‘Spark Advance Blend Multiplier’ to Total SA-REF and save the “blended” value back to Total SA-REF. Also save it to ‘L00BD=Final SA Relative to DRP’ (Note: SA is saved to L00BD, but it is not used anywhere in the code).

· Negative – A negative value of Total SA-REF is mathematically possible, but practically unlikely except perhaps at startup; so the code has to allow for it (remember Total SA-REF = Total SA-TDC - Distributor Setting). If Total SA-REF is negative, the SA Blend Multiplier is not used. If Total SA-REF is negative, it is ultimately converted to a positive value (see Simulation - Spark Minor Loop-Negative Total SA-REF).
12. When SA calculations are completed in Steps 1-11, the value of Total SA-REF is pushed to the stack for later use in the “Spark Out Routine” (assume this is where the pushed value is sent to the ECM to direct coil and distributor activities for this pass through the Spark Minor Loop). The pushed value is:

· If Total SA-REF is initially positive:

· The LSB of the original L00BB, after being SA Multiplier-blended

· If Total SA-REF is initially negative:

· The LSB of the original L00BB, not SA Multiplier-blended, but converted from negative to positive
See Simulation – Spark Minor Loop-Total SA-REF which lists the simulations run and the final pushed values.
The MSB of Total SA-REF can potentially be reduced by a maximum of one each pass through the code, but the simulation failed to produce anything but zero for the MSB for any value for Total SA-REF. Thus the MSB remained unadjusted. Only the LSB was adjusted.
13. The final values for Total SA are:

· ‘L0128=Total SA-TDC’
· ‘L00BB=Total SA-REF’ = original value, SA Multiplier-blended

· ‘L00BD=Total SA-REF-FINAL’ = L00BB (L00BD not used)
--

Code Execution Time-line
The purpose of this time-line is to visually show when the code segments discussed in this document are executed.

If the Time-line is not visible, select ‘View’>’Print Layout’.

 |

|

|
 0 6.25
 25

 100

 1000

 |-- Milliseconds (ms) ---|

--

Power Enrich (Forced) Knock Test

Summary
The purpose of this test is to check the Knock Sensor for proper operation if certain conditions are met. It is identified in the code as “Err 43B test”. While Forced Knock Test conditions are active, a small amount of SA is rapidly added to a ‘Forced Knock SA’ variable each pass through the code. That variable is later added to Total SA–TDC. If KCs are then detected, the test is deemed to have passed. Otherwise, it is deemed to have failed if the ‘Forced Knock SA’ variable reaches a maximum before KCs are detected. Either way, bit-flags are set indicating the test has been completed.
Details
The Forced Knock Test logic spans several areas in the code:
· Data Area - If bit 4 (commented as: “Code 43 Knock”) of ‘L824B=Error Word 3 Mask’ is set to 0, the Forced Knock Test and Knock Sensor Voltage Error test, both in Subroutine LSEG_A, will not be run. The remainder of the commentary will assume that this bit is set = 1 as it is in Stock AUJP $8d.
· Subroutine LSEG_A - The following conditions must be met for the Forced Knock Test to be invoked. They are shown in the order executed in the code:

· MAP must be >= ‘L829D= If MAP < 75 Then Disable Err 43B’ (75 kPa)’
· ‘L013B=SA Blend Multiplier’ must = 0

· ‘L005D=Filtered Coolant Temp’ must be > 95 °C (203 °F).

Subroutine LSEG_A is accessed once every 100ms (10 times per second), but the above tests are only performed once per second. This is very slow in computer terms, so the test for these conditions is really periodic as many things can significantly change in one second.
‘L013B=SA Blend Multiplier’ can have a value of $00 - $FF. It is used primarily to “blend” (adjust) Total SA-REF before it is saved as its final value. While more research needs to be done on L013B, for now it appears that a value >= 0 indicates that SA blending is in process, while $FF indicates completion. Regardless, it is clear there is a 1 in 255 chance of passing this test (i.e. – when it equals zero), which makes it very restrictive. That means that even though MAP and Coolant Temperature thresholds may have been met, the SA Blend Multiplier is a delaying factor in the test being invoked.
· Injector Area of the IAC PID Minor Loop – This code is called by the 6.25ms Interrupt Service Routine (i.e. – the logic executes every 6.25ms):

· The variable ‘L01A7=SA for Err 43[B]’ is incremented by 0.3 degrees. The variable was initially zero at startup.

· This continues until ‘L01A7=SA for Err 43[B]’ = 24.9 degrees and no KCs have occurred.

· Reaching 24.9 degrees without any KCs will require 83 iterations though the code (24.9 / 0.3 = 83). This will take approximately 0.5 seconds to reach 24.9 degrees if no KCs:
 6.25ms/iteration * 1 sec/1000ms * 83 iterations = 0.51875 sec
· Spark Minor Loop - If ‘L005D=Filtered Coolant Temp’ is > 203 °F, Forced Knock SA (‘L01A7=SA for Err 43[B]’) is allowed to be added to ‘L0128=Total SA-TDC’.
But, ‘L01A7=SA for Err 43[B]’ is added to Total SA-TDC not once, but twice. Is this by design or a coding error? I believe it’s a coding error (see AUJP code instructions at “SUM THE SPARK ADVANCES”, label LBA24 and following where the value in Accumulator B (‘L01A7=SA for Err 43[B]’) is added to a zero-value Register X; then, having just been pushed to the stack, it is pulled and added again). This is all the more reason to disable the Forced Knock Test, especially if coolant temperature routinely exceeds 203 °F.

Many recommend disabling this test by changing the temperature at $829C from $B4 (95°C, 203 °F) to $FE (151 °C, 303°F). This will certainly disable the test, but consideration should be given to also changing the Calibration Constant ‘L829D= If MAP < 75 Then Disable Err 43B’ (75 kPa)’:

from:
$4B
= 75 kPa (No conversion: $4B = 75d)

to:
$6E
= 110 kPa ($6E = 110d)
This will cause the logic to be exited immediately and will avoid two additional tests (Spark Blend Multiplier and Coolant Temperature).
With that background, the code segments that deal with KC and KR Degrees are discussed below.

--

Subroutine LSEG_8 (LOSR Modifier)
Purpose – This Subroutine calculates the variable ‘L01C0=Low Octane Modifier, Temporary’ (the LOSR “Modifier”) if certain conditions are met. Once calculated, the LOSR Modifier is used in the SCALE & DO LOW OCTANE S.A. RETARD area of the Spark Minor Loop to possibly retard Total SA-TDC. This is a critically important variable because it is a prime determinant in calculating how much Total SA-TDC will be retarded if the Low Octane logic is in force.
Execution - This is one of 16 code segments accessed once every 100ms, or 10 times per second. But despite the Subroutine being accessed every 100ms, the code it contains is only executed once per second; otherwise, the Subroutine is exited and nothing is done.

All the following conditions must be met in order for this Subroutine to be executed:
· No Knock Sensor Voltage Error, (b5 of L00C3 not set, =No Error 43A)

· No knocks detected this startup in the Power Enrich (Forced) Knock Test (b7 of L0002 not set, =No Error 43B)

· ‘L0103=A/D Battery Voltage’ must be > 9.3 volts
· Low Octane Conditions: If the above conditions are met, all the following Low Octane conditions must next be met for the Low Octane Spark Retard logic to be invoked. If not met, the LOSR Modifier will either not be calculated, or will not be changed if previously calculated:
· ‘L0071=Current MAP’ must be >= the Calibration constant ‘L8229=Lo Map Thresh for Lo Oct Mod (70 kPa)’

· A MAP Difference of ‘L0071=Current MAP’ minus ‘L0073=MAP 25ms Ago’ must be < 0 (i.e. - Current MAP < MAP 25ms Ago, meaning load is not increasing), and
· The MAP Difference must be < 0.6 kPa (meaning engine load is very constant)
The Subroutine does not deal with KCs at all. Rather, it tests the current value of ‘L00C4=KR Degrees’ to make some of its decisions, which correctly assumes knocks have been previously detected (Remember, KCs are used to compute KR Degrees.)

The all important LOSR Modifier used later to possibly retard ‘L0128=Total SA-TDC’ is the product of:

· ‘L822E=Degrees SA Retard’ (4.92 degrees) (the “Constant”)

· ‘L01BF=Low Octane KR Counter’ (the “Counter”)

As the Counter is increased, the product of the multiply increases, and vice versa. More on the implication of that below.

About the above multiplied values:

· The Constant (4.92 degrees) is set in the Calibration.

· The Counter is not a counter in the true sense. Rather, it contains KR Degrees. The value of the Counter is adjusted as follows:

· The Counter is increased:

· If KR Degrees are > ‘L822B=Low Octane KR Threshold’ (5.98 degrees). Here, a “HI Knock” condition is assumed and the Counter is increased by the Calibration value ‘L822C=Low Octane KR Increase Amount’ (17.58 degrees). Once a “HI Knock” condition is established and the “Low Octane Conditions” above are met, 17.58 degrees is added to the Counter each time this logic is executed until the Counter exceeds $FF. Once > $FF, the Counter is set to $FF degrees.
· The Counter is decreased:

· By 0.7 degrees, if and only if:

· There was an Err 43A = Knock Sensor Voltage Error, or

· There was an Err 43B = Forced Knock Test detected no knocks this startup (= “Test Failed” according to the code comments), or

· Battery Voltage is < 9.3v, or

· KR Degrees = 0, and the ‘NO Knock Flag Last Pass’ is set

· If reducing the Counter by 0.7 degrees causes the Counter to go negative, the Counter is set equal to zero.

The product of the Constant and Counter has a maximum value of $0DF2 (Constant always ($0E) * Counter Max ($FF) = $0DF2). The MSB ($0D) is then rounded, and can be rounded up to $0E. This is the maximum value the LOSR Modifier can attain. It is this value that is used in the SCALE & DO LOW OCTANE S.A. RETARD Logic to retard ‘L0128=Total SA–TDC’.

Code simulation indicates that each $10 reduction in the Counter value results in an approximate $01 reduction in the value of the LOSR Modifier. Again, this assumes Stock AUJP values (see Spreadsheet Simulation - Spark Minor Loop, Low Octane Spark Retard).
Note that the Counter is increased very quickly, but is reduced very slowly. This means the LOSR Modifier will normally be a relatively high value, which when used by the SCALE & DO LOW OCTANE S.A. RETARD logic, will cause a greater retardation in ‘L0128=Total SA –TDC’.

One final item. Years ago Grim Reaper posted how to disable the Low Octane logic, here: (http://www.thirdgen.org/techboard/diy-prom/39115-p730-octane-retard-routine.html). Certainly not wishing to disagree with what has been previously posted, but it recommends changing many variables to disable the logic. Actually, it can be disabled by changing only one variable: ‘L8229=Lo Map Thresh for Lo Oct Mod (70 kPa)’:

from: $A0 = 70 kPa
to:
 $120 = 110 kPa, or possibly higher if not normally aspirated.
There is no conversion value for this variable. The decimal equivalent of the hexadecimal value is the actual kPa.

This will absolutely ensure that the Low Octane logic in this Subroutine will not be executed. The Subroutine will be immediately exited because the MAP threshold (110 kPa) cannot be exceeded in the first Low Octane Condition test. Further, all the other Low Octane Calibration values (L822A, B, C, D, E) referenced in the above post are only used in this LSEG_8 Subroutine and cannot be accessed or tested unless MAP is greater than the ‘L8229=Lo Map Thresh for Lo Oct Mod (70 kPa)’ threshold (110 kPa, if changed). See Low Octane Spark Retard for implications of disabling this test.
--

SCALE & DO LOW OCTANE S.A. RETARD

Purpose - This code has only one purpose: to determine how much, if at all, to retard ‘L0128=Total Spark Advance (SA) –TDC’. It is part of the Spark Minor Loop.
Execution - It is executed every 12.5ms, or 80 times per second.

The Low Octane Spark Retard code is executed after ‘L0128=Total SA-TDC’ is determined (see Steps 1 and 2 above). There will always be some retardation of ‘L0128=Total SA-TDC’, provided:

· the LOSR Modifier calculated in Subroutine LSEG_8 is greater than zero, and
· MAP is > 35 kPa when this logic is executed (see below)
In addition to the LOSR Modifier, there are two Tables also used to determine any retardation of ‘L0128=Total SA-TDC’:

· ‘L822F=Low Octane Knock Multiplier .vs. RPM’ (Table values decrease with RPM)

· ‘L8238=Low Octane Knock Multiplier .vs. MAP’ (Table values increase with MAP)

Note that if MAP is <= 35 kPa when the above L8238 MAP Table is accessed, the value extracted from the Table will = 0.

The calculations made with these Table values are less than intuitive, but the bottom line is that the greatest reduction of ‘L0128=Total SA-TDC’ occurs when RPM is < 3200 and MAP is > 75, where the Table factors are the greatest. In the final analysis, the value of the LOSR Modifier is the major determinant in reducing Total SA-TDC. In fairness, it should be noted that the variable ‘L01C1=Low Octane Retard Modifier, Final’ is actually used to determine the reduction in SA, but it is calculated from the Modifier. (L01C1 contains nothing more than a calculated and saved value that is not used anywhere in the code.) More code confusion!
A beginning value of 26.02 degrees for ‘L0128=Total SA-TDC’ used in a simulation of the code produced the results below. Similar results were produced at other beginning Spark values (see Spreadsheet Simulation – LSEG_A, KR Decay for details):

‘L01C0=Low Octane Modifier, Temporary’

RPM

MAP

$0E (Max)

$01 (Min > 0)
Reduction in Total SA
2100

33

2.82 Deg

0.36 Deg

10.8%

1.4%

Reduction in Total SA
4250

67

3.17 Deg

0.36 Deg

12.2%

1.4%

This indicates that an approximate 3 degrees reduction at the maximum value of the LOSR Modifier ($0E) can be expected. At lesser values of $01 - $09, the reduction will be approximately 1 degree.

--

Subroutine LSEG_A (Decay of KR Degrees)
Purpose – Only the KR Decay logic of this Subroutine was analyzed. It starts at the beginning of the Subroutine and runs through label ‘LD6E8:’ where ‘L00C4=KR Degrees’ is loaded with a new, decayed value. This code determines how much to decay KR Degrees.
Execution – As with Subroutine LSEG_8, this Subroutine is also one of 16 code segments accessed once every 100ms or 10 times per second; however, certain portions of this Subroutine are not executed each time accessed. Specifically:
· KR Degrees decay logic is executed every other entry to the Subroutine (i.e. – every other 100ms, so effectively every 200ms).
· All other logic in the Subroutine is executed every time the Subroutine is accessed (every 100ms), with the exception of the Forced Knock Test invocation logic which is only executed once per second.
The area of the Subroutine code analyzed uses two items to determine how much to decay KR Degrees:

· a value from the Table ‘L8213=Knock Percent Recovery Rate .vs. RPM’ (spark degrees per millisecond)
· ‘L00C4=KR Degrees’
These values are multiplied together to get a new value for ‘L00C4=KR Degrees’.
Simulation of various RPMs and beginning KR Degrees produced the results shown below. RPM values of 800, 2600 and 4200 were used to ensure that each of the Table’s three possible values would be extracted (0.450, 0.697, 0.698). Beginning KR Degrees were varied at each RPM from the minimum to maximum 1-byte allowed value (hex-00, 3F, 7E, 7F. 80, DF, FF). Results materially varied only with changing RPM. Beginning KR Degrees had little effect on reducing KR Degrees, causing no more than a few tenths of a percent variance. The following KR Degrees reductions resulted:

RPM

Average KR Degrees (% Reduction)
 800

 8.5%

2600

10.3%

4200

12.5%

Bottom line, using Stock AUJP values and holding everything constant but the variables to be measured, it can take up to 2+ seconds to fully decay KR Degrees to zero.
Note that decay of KR Degrees can be accelerated by increasing the values in the Table ‘L8213=Knock Percent Recovery Rate .vs. RPM’. Stock AUJP Table values range from $14 at 400 RPM to $1F at 4800 RPM. During simulation, the Table value at 3200 RPM was doubled ($1F = 0.698d to $3E = 1.396d). As expected, for all values of beginning KR Degrees, the percentage reduction of KR Degrees was approximately double that which resulted from using the Stock AUJP Table value.
--

Following the Corrections area below are:
· Flowcharted Code Segments

· Simulation Data

· Flowcharts

--

Corrections
Version 3 – May 30, 2013

· Page 10 – Spark Minor Loop Bullet

· Corrected kPa value to disable Forced Knock Test from $160 to $6E to properly reflect 110 kPa.

· Page 14 – Subroutine LSEG_A

· Page 8 – Code Execution Time-line

· Corrected execution time/frequency of decay of KR Degrees to properly reflect every 200ms.

· Flowcharted Code Segments
· Added all new segments incorporating text additions and corrections for time/frequency in LSEG_A.

· Arrangement

· Moved Flowcharts to end of document
Version 2 – January 27, 2013

Added omitted links to document segments and corrected execution times of various code segments as shown below:

· Subroutine LSEG_A (Decay of KR Degrees)
· Corrected execution time of the KR Degrees decay logic from once every 200ms to properly reflect it as executed in a 1600ms (1.6 second) on and 1600ms off pattern.

· SCALE & DO LOW OCTANE S.A. RETARD

· Corrected execution time from 25ms to correctly reflect 12.5ms. This correction should have been made in MOD 1 as this code is also part of the Spark Minor Loop.

· Code Execution Time-line

· Changed to reflect the above execution corrections.

· Subroutine LSEG_A Code Segment

· Replaced with properly commented code reflecting the execution time changes above.
Version 1 – January 19, 2013

The change corrects the execution time of a code segment:

· EST Spark Timing (called the Spark Minor Loop in the code)
· Corrected execution time from 25ms to correctly reflect 12.5ms.
Initial Release – January 10, 2013

Subroutine LSEG_8
; [SEGMENT SUBROUTINE]
; ***

; * KNOCK, LOW OCTANE SPK MOD LOGIC
; *

; * >>> SEGMENT 8 OF MAJOR LOOP EXE <<<<<

; * [Executed ONLY ONCE per second]
; **

LSEG_8: ldaa *L0000 ; MINOR LOOP COUNTER

 cmpa #0x08 ; CHECK FOR 1 SECOND [Checks for value of $08, which can only occur once per sec]

 bne LD5CD ; EXIT IF L.T. 1 SECOND
 ; else [It’s now One Second so time to execute this Subroutine]
; [The following conditions must be met in the order shown for the Low Octane logic to be executed;

;
- kPa Must be >= 70

;

- else, clear HI and NO Knock last pass bits and exit

;
- Current kpa must be < kpa 25ms ago & the kpa difference must be < 0.6 kpa

;

- else, clear HI and NO Knock last pass bits and exit

; Based on the above, it appears GM felt the test should not produce knocks if > 70 kpa and a minor difference in kpa.

; If knocks were detected, then it was assumed to be fuel because there was no incremental load on the engine due to kpa

; being relatively constant.

;---

; LOW OCTANE ENABLE/DISABLE TEST

;---

;------------------------

; KNOCK SENSOR FAIL TEST
;------------------------

 ldab L01BF ; LO OCTANE RETARD KNOCK COUNTER

 ; [Knock Sensor Voltage Error if Bit 5 set]
 brset *L003C,#0x20,LD5B6 ; BR IF b5, KNOCK [SENSOR] ERROR BIT, Error 43A (Goes to LD5AE in ANHT)

 ; ... else

 ; [If B7 set = No knocks detected this startup in Forced Knock Test]

 brset *L0002,#0x80,LD5B6 ; BR IF b7, EST ERROR 43B BIT [No Err 43B Knocks this startup]

 ; (Goes to LD5AE in ANHT)

 ; ... else

 ldaa L0103 ; A/D BATTERY VOLTAGE, (VAL * 0.0968 = Volts)

 cmpa #0x5D ; VAL = 93, 9.3 VDC

 bcs LD5B6 ; BR IF Vbat L.T. 9.3 Volts

 ; else

;----------------------

; ABS MAP ENABLE TEST [No errors-All OK so proceed with Low Octane Test]
;----------------------

; [This is the key test. If Normalized MAP (Calculated value) is < L8229 (70 kpa), the test is exited. Must be > 70]
 ldaa *L0071 ; NORMALIZED LOAD MAP VALUE

 cmpa L8229 ; LO MAP THRESH FOR LO OCT MOD, (70 Kpa)

; [If MAP is < L8229 (70 kpa) Threshold, clear L003A b0=HI Knock Last Pass and b1=NO Knock Last Pass, & then Exit]

 bcs LD5CA ; IF MAP TOO LOW, CLEAR FLAGS [and Exit] (Goes to LD5C2 in ANHT)

 ; else

;----------------------

; DIFF MAP ENABLE TEST [MAP >= Threshold (70 kpa), Continue]
;----------------------

 suba *L0073 ; NORMALIZED MAP LD Var,(25 Ms old) [A = (A=Current MAP – B=MAP 25ms ago)]
 bcs LD58C ; BR IF DIFF MAP L.T. 0 [BR if Diff < 0 =(MAP Now < MAP 25ms ago)
 ; (Goes to LD584 in ANHT)

 ; else [Map Now >= MAP 25 ms ago]
 cmpa L822A ; DIFF MAP THRESH, (0.6 Kpa)

 ; [If Diff MAP > .6, Exit and don’t do test]
 bhi LD5CA ; IF DIFF MAP TOO HIGH, CLEAR FLAGS [and Exit] (Goes to LD5C2 in ANHT)

 ; ... else [See below]
;---------------------------------

; LO OCTANE SPARK MODIFIER ENABLED
; CHECK FOR HI KNOCK OR NO KNOCK
;---------------------------------

; [If get here:

;
- Current MAP > 70,

;
- Current MAP < MAP 25 ms ago, and

;
- Differential MAP (Current MAP – MAP 25ms ago) <= 0.6 kpa]

LD58C: ldaa *L00C4 ; KNOCK RETARD [Spark Degrees] ; CRef: 0xD585

 ; [‘beq’: if LC004 = 0, Z=1, Branch as shown; if <> 0, go to ‘cmpa’ below]

 beq LD5AA ; BR IF NO KNOCK [If Knock “RETARD” = 0] (Goes to LD5A2 in ANHT)

 ; ... else [Have prior Knock Retard]
 cmpa L822B ; KNOCK RETARD THRESH, (3.8 Deg) [5.98 degrees set in Calibration]
; [‘bls’: if Knock Retard (Reg A) lower/same than THhold L882B, Branch = Exit; else = HIGH KNOCK NO Branch & next]

 bls LD5CA ; IF LO KNOCK [Knock Retard deg <= 5.8 deg], CLEAR FLAGS [and Exit]

; (Goes to LD5C2 in ANHT)

 ; ... else [Knock Retard this pass > Threshold (5.98 degrees)]
;-----------------------------

; HIGH KNOCK, INCREASE RETARD

;-----------------------------

 brset *L003A,#0x01,LD5A1 ; BR IF HI KNOCK LAST PASS (Goes to LD599 in ANHT) [HI Knock = > Thresh]

 ; ... else [HI Knock not set lst pass, so set it and clear NO Knock]

 bset *L003A,#0x01 ; SET HI KNOCK FLAG

 bclr *L003A,#0x02 ; CLEAR NO KNOCK FLAG

 bra LD5BC ; DO SCALING TO ACTIVITY COUNTER (Goes to LD5B4 in ANHT)

; ---

; [If HI Knock last pass, add 17.58 deg to L01BF LO OCTANE RETARD KNOCK COUNTER = Accum B]

LD5A1: addb L822C ; RETARD [COUNTER] INCREMENT VALUE, (18 DEG) [B= 17.58 deg, $32] ; CRef: 0xD595

 bcc LD5BC ; IF NO OVERFLOW (Goes to LD5B4 in ANHT)

 ; ... else [L01BF =Lo Octane Retard Knock Counter + 17.58 > 255]
 ldab #0xFF ; FORCE USE MAX LIMIT

 bra LD5BC ; DO SCALING TO ACTIVITY COUNTER (Goes to LD5B4 in ANHT)

; ---

;---------------------------

; NO KNOCK, DECREASE RETARD [Knock Retard Degrees = 0]
;---------------------------

LD5AA: brset *L003A,#0x02,LD5B6 ; BR IF NO KNOCK PRIOR PASS (Goes to LD5AE in ANHT); CRef: 0xD58E

 ; ... else

 bset *L003A,#0x02 ; SET NO KNOCK FLAG
 bclr *L003A,#0x01 ; CLEAR HI KNOCK FLAG
 bra LD5BC ; DO SCALING TO ACTIVITY COUNTER (Goes to LD5B4 in ANHT)

; ---

; [The reduction below ONLY occurs if:

;
- There was an Err 43A = Knock Sensor Voltage Error

;
- There was an Err 43B = Forced Knock test Detected knocks

;
- Battery Voltage is < 9.3v

;
- Knock Retard Degrees = 0

;
- The NO Knock Flag Last Pass is set (only set in this SR).

; Decrement Counter by 0.7 deg]

LD5B6: subb L822D ; DEC LO OCT RETARD, (2 CTS) [0.7 Deg]

; CRef: 0xD56D,0xD571,0xD57A,0xD5AA

 bcc LD5BC ; IF NO OVERFLOW [Counter Positive or zero] (Goes to LD5B4 in ANHT)

 ; ... else [Counter Negative]

 clrb ; B = 0

;--------------------------------

; USE LO OCTANE KNOCK COUNTER

; TO BASE SPARK MODIFICATION

;--------------------------------

; [Counter L01BF initially Zero. Value in Accum B loaded to counter below (REALLY DOES NOT APPEAR TO BE A COUNTER):

;
- If at entry here, L00C4 Knock Retard degrees = 0, Prior counter value is loaded.]

;
- If NO knock prior pass, load counter value less 0.7 deg, or 0 if counter has been decremented to < 0 (above)

;
- If HI Knock last pass, Accum B = either $FF or Prior Counter value + 17.58 deg.

; In short, the Low Octane Knock Counter appears to be a large number that is decremented by only 0.7 each pass, so it

; will persist for a while]

LD5BC: stab L01BF ; LO OCTANE RETARD KNOCK COUNTER ; CRef: 0xD59F,0xD5A4,0xD5A8,0xD5B4,0xD5B9

 ldaa L822E ; DEG S.A.RETARD, (5.8 DEG) [$0E, 4.92 deg per Calibration-Only place USED]

 mul ; KNK Cnt [s/be (A)=0x822E VAL * (B)=Lo Octane Retard Knock Counter (D = A * B)]
 adca #0x00 ; ROUND OFF

 staa L01C0 ; LO OCTANE RETARD MOD'ER, TEMPORARY [ONLY Stored here]

 bra LD5CD ; EXIT (Goes to LD5C5 in ANHT)

; ---

;-----------------------------------

; LO OCTANE S.A. RETARD MOD DISABLED

; CLEAR FLAGS

;-----------------------------------

LD5CA: bclr *L003A,#0x03 ; CLR HI & NO KNOCK FLAGS ; CRef: 0xD581,0xD58A,0xD593

LD5CD: rts ; RETURN TO MAJOR LOOP EXE ; CRef: 0xD568,0xD5C8

LSEG_8-R:
Spark Minor Loop - SCALE & DO LOW OCTANE S.A. RETARD
; -- Start Low Octane SA Retard Logic --

; [This logic ALWAYS executed and cannot be avoided. Spark will ALWAYS be RETARDED by some small amount if KPA is >=35,

; (35=Minimum Table value), AND L01C1=LO OCTANE RETARD MOD’ER, FINAL is calculated/rounded to be > 0, regardless of RPM &

; irrespective of whether idling (VSS = 0) or not].

; [Also, this logic has nothing to do with knocks. The only relationship is the use of the L01C0 & L01C1 =LO OCTANE RETARD

; MOD’ER (respectively, (0)TEMPORARY and (1)FINAL) which results from the Knock .vs. MAP and RPM Tables if MAP >= 35]
; SCALE & DO LOW OCTANE S.A. RETARD
 pshb ; Save [“Gain Adjusted” above or “Unadjusted” TOTAL] SA on stack

 psha ;

;--

; LK UP LOW OCTANE KNOCK MULT vs RPM

;--

 ldaa *L0058 ; ACTUAL RPM/25 (un-filt)

 lsra ; Scale for 800 RPM break points , DIVIDE BY 2

 ; [Multiplier below DECreases with RPM (0 RPM = 0.966, 6400 RPM = 0.75]

 ldx #L822F ; Low Octane KNOCK mult vs RPM [Table]
 jsr LE3D8 ; 2D LOOK UP, NO OFF SET [A = Table RPM Multiplier] (Is LE3D0 in ANHT)

 tab ; Copy MULT to B Reg (A stays the same) [B = Lo Octane RPM Multiplier]

;--

; LK UP LOW OCTANE KNOCK MULT vs MAP

;--

 ldaa *L0071 ; NORMALIZED LOAD MAP VAL

 ; [Multiplier below INCreases with kpa (0-34 kpa =0, 35 =0.50, 100 =0.966]

 ldx #L8238 ; Low Octane KNOCK mult vs MAP TABLE

 jsr LE3D8 ; 2D LOOK UP, NO OFF SET [A = Table MAP Multiplier] (Is LE3D0 in ANHT)
 mul ; RPM * MAP (Mult’s) = “D” [D = MAP Multiplier * RPM Multiplier]
 adca #0x00 ; SCALE [Round A = MSB of RPM * MAP Modifiers]
 ldab L01C0 ; LO OCTANE RETARD MOD’ER, TEMPORARY [Overwrite LSB of RPM * MAP]
 mul ; (A * B = D) [D = Rounded A * Lo Octane Modifier TEMP]
 adca #0x00

 ; SCALE [Round A]
 staa L01C1 ; LO OCTANE RETARD MOD’ER, FINAL

 pula ; GET SPK ADVANCE from STX [“Gain Adjusted” TOTAL SA]
 pulb

 subb L01C1 ; LO OCTANE RETARD MOD’ER, FINAL

 sbca #0x00

 ; [A = A – Memory ($00) – Carry bit if set (Will ALWAYS only subtract 0 or 1)]

; [Total SA ALWAYS modified slightly downward provided MAP is > 35 and L01C1 =Lo Octane Modifier-FINAL is CALCULATED > 0]
 std L0128 ; SPARK ADVANCE [Final, Modified TOTAL SA = TDC]
; == Skip since no Heads Up Display ==

;--

; HEADS UP FOR SPARK MOD

;--

 brclr *L0036,#0x80,LBB47 ; BR IF NOT b7, NO HEADS UP CONNECTED

 ; … else

; [L5803 is defined and then referenced here in a SubRoutine call, but the SubRoutine does not exist]

 jsr L5803 ; To HU for SPK ADV MOD Modification

 ; Branch Outside Loaded Source

; == Skip since no Heads Up Display ==

;

; SUB OFF SPK INITIAL ADVANCE

;

LBB47: subb L8025 ; 6 DEG REF SPK ANGLE ; Cref: 0xBB40

 sbca #0x00

 std *L00BB ; SPK ADV Rel to DRP, (un-lim) [TDC less Dist Setting]
;

; LIMIT SPK ADV TO 40 DEG

;

; [Note that the real value of L8026 is 41.84 degrees using the TunerPro SA degrees conversion factor
 (0x77 = 119d * 0.351563 = 41.84 degrees Max allowed]

 ldd L8026 ; 39 DEG, (MAX ADDED SA LMT) [Only place used]
 subd *L00BB ; SPK ADV Rel to DRP, (UN-LIM)

 bgt LBB59 ; Branch If Greater Than [Zero]..

 ;…else

 addd *L00BB ; SPK ADV Rel to DRP, (UN-LIM)

; [There are tests elsewhere in the code about this value being negative. Mathematically, that is possible I guess, if
; if SA-TDC is less than the Distributor setting, which would cause this value to become negative]

 std *L00BB ; Save NEW SPK ADV Rel to DRP, (UN-LIM) [FINAL TOTAL SA-Ref Pulse]
; -- End Low Octane SA Retard Logic ---

Spark Minor Loop – Negative Total SA-REF L00BB & L00BD
; ---------------------- See if Discontinue Forced Knock Test ---------------------------
; PWR ENRICH [FORCED] KNOCK TEST
; [If analysis of stack activity is correct, and it has been verified to be, the labeling below for ‘pula’ is incorrect.

; Based on above, ‘pula’ below puts into:

;
- Accum A:
Attack Rate Adjusted Knock Retard Degrees / 2

;

Fortunately, it looks lile the ‘pula’ is NOT USED as there is no Reg A activity until ‘A’ is

;

loaded With ‘L013B=SPARK ADVANCE BLEND MULTIPLIER’ below LBC4E below.

;
- Accum B:
LSB of the Knock Count = C2 Fast Count]

LBBF5: pula ; GET KNOCK COUNT FROM STX [Incorrect ???- See above] ; Cref: 0xBBE8

 pulb ; GET KNOCK COUNT FROM STX [Correct & the LSB value of 0x00C1 in 0x00C2]

 tstb ; TEST To see if value is Zero

 beq LBC0F ; BR IF EQUAL, KNOCK CNT = 0

 ; … else [Knock Count > 0]
 brclr *L0002,#0x01,LBC03 ; BR IF ERR 43 [S/be ‘43B’] TEST IN PROGRESS FLAG [=0 = Test NOT in Process]

 ; … else [b0 set, so Forced Knock Test is in Progress – Turn Off Test]
 bclr *L0002,#0x01 ; CLR ERR 43 [S/be ‘43B’] TEST IN PROGRESS FLAG

 bra LBC09 ; BRANCH ALWAYS

; ---

; [Get here if NOT in Forced Knocked Test]

LBC03: ldab L013B ; SPARK ADVANCE BLEND MULTIPLIER ; Cref: 0xBBFA

 incb ; INCR BLEND VAL

 bne LBC0C ; BRANCH IF BLEND IS NOT ZERO [ONLY = 0 at startup, or =$FF and incremented]
 ; … else [SA Blend Multiplier = 0]
; [Get here:

;
- if b0 of L0002 was set (test IN Process) and then turned OFF, bypassing Spark Blend Multiplier above, or

;
- if b0 of L0002 was NOT set (test NOT in Process) & if SA Blend Multiplier = 0 based [Is Blending COMPLETED???

; Either Way, whether blending is finished or not, Err 43B test is set as “Not in Test”]

LBC09: bset *L0002,#0x40 ; SET b6, Err 43B SPK TEST DONE THIS START UP ; Cref: 0xBC01

; [Branched here if SA Blend Multiplier > 0 [Does this mean Blending is NOT Completed???]

LBC0C: bclr *L0002,#0x80 ; SET [CLEAR] b7, EST ERROR 43B BIT ; Cref: 0xBC07

 ; (TEST FAILED THIS START UP) [S/be “No Err 43B knocks this start-up”]
; ---------------------- See if Discontinue Forced Knock Test ---------------------------
;

; LIMIT SPK RETARD

;

; [Get here if ZERO KNOCK COUNTS this pass, so no flags set and test continues, or

; had knocks, flags were set above, and prepare to exit]

LBC0F: ldx L8028 ; Max Retard, (65525d) 3.5 DEG [Actually is MAX RTD for Knock = -3.5 deg]

 ; Cref: 0xBBF8

 cpx *L00BB ; SPK ADV Rel to DRP, (UN-LIM)

 blt LBC18 ; BRANCH IF LESS THAN [Zero] [AND L00BB Negative & < -3.5]
 ; … else [L00BB Positive]

; [Again, there can be a negative here. cpx (x = x - Mem, x = $FFFE – L00BB (which will always be < L00BB because FFFE is
; negative),UNLESS L00BB is less than -3.5, where the cpx result would be positive, NOT cause a branch and cause -3.5
; to be loaded here. Again mathematically possible, but not likely. See further uses of this variable below.]
 stx *L00BB ; SPK ADV Rel to DRP, (UN-LIM)
;--

; ALDL MODE 4

;

; SET SPK ADV/SPK RETARD FLAGS AND APPLY SPK ADV
;

; CNTL WD 0x0198, b4

; CNTL WD 0x0198, b5

; CNTL WD 0x019B, SPK ADV

;

;--

LBC18: brclr *L0048,#0x01,LBC4E ; BR IF NOT IN MODE 4 ; Cref: 0xBC14

; == Skip this = Mode 4 ===

 ; … else

 ldaa L0198 ; ALDL FUNCT MODE ENABLE WORD

 bita #0x08 ; b3,

 beq LBC4E ; Br IF EQUAL, NOT CNT’LING SPK, (EXIT)

 ; … else

 ldab L019B ; CONTROL WORD, ALDL SPK ADV

 bita #0x10 ; b4,

 bne LBC36 ; Br IF MOD’ING sPK

 ; … else

 bita #0x20 ; b5,

 beq LBC33 ; Br IF EQUAL, IN ADV SA

 ; … else

 ldaa #0x80 ; VAL = 128,

 negb ; Replace Contents of ACC’X with 2’s complement

 bra LBC4A ; Br IF IN RETARD SA

LBC33: clra ; A = 0 ; Cref: 0xBC2C

 bra LBC4A ; BRANCH ALWAYS

LBC36: bita #0x20 ; b5 ; Cref: 0xBC28

 bne LBC43 ; BRANCH IF Not Equal

 ;…else

 ldd *L00BB ; SPK ADV Rel to DRP, (UN-LIM)

 addb L019B ; CONTROL WORD, ALDL SPK ADV

 adca #0x00 ; ROUND OFF

 bra LBC4A ; BRANCH ALWAYS

LBC43: ldd *L00BB ; SPK ADV Rel to DRP, (UN-LIM) ; Cref: 0xBC38

 subb L019B ; CONTROL WORD, ALDL SPK ADV

 sbca #0x00 ; ROUND OFF

LBC4A: std *L00BB ; SPK ADV Rel to DRP, (UN-LIM) ; Cref: 0xBC31,0xBC34,0xBC41

 bra LBC61 ; BRANCH ALWAYS

; == Skip this = Mode 4 ===

LBC4E: brset *L0042,#0x80,LBC61 ; BR IF b7, IN DIAGNOSTICS ; Cref: 0xBC18,0xBC21

 ; …else

 ldx *L00BB ; SPK ADV Rel to DRP, (UN-LIM) [= 16-bit multiplicand for SR LE347
 bmi LBC61 ; BRANCH IF MINUS

 ;…else

 pshx

 ; [L00BB =Total SA-REF]]

 tsx ; Transfer from SP to Index Register X

 ldaa L013B ; SPARK ADVANCE BLEND MULTIPLIER [8-bit multiplier for SR LE347]

 jsr LE347 ; 8 x 16 MULT [A=MSB Result, B=LSB] [D=Adjusted Total SA-REF]

; (Is LE33F in ANHT)

 pulx

 ; [Get back unaltered Total SA-REF]

 std *L00BB ; SPK ADV Rel to DRP, (UN-LIM) [D=SR Adjusted Total SA-REF]

; [L00BB is negative, or is the Adjusted value from SR LE347]

LBC61: ldd *L00BB ; SPK ADV Rel to DRP, (UN-LIM)

; Cref: 0xBC4C,0xBC4E,0xBC54

; [L00BD = L00BB = is negative, or is the Adjusted value from SR LE347, so L00BD = L00BB]

 std *L00BD ; FINAL SPK ADV REL TO DRP
 bmi LBC6C ; BRANCH IF MINUS

 ;…else [L00BD =Total SA-REF is Positive]
 bclr *L0037,#0x01 ; CLR b0, 1 = SPARK RETARD [b0 = Advance]

 ; {IF ADVANCE CLEAR RETARD FLAG}

 bra LBC70 ; BRANCH ALWAYS

; ---

; [L00BD =Total SA-REF is Negative]

LBC6C: bset *L0037,#0x01 ; SET b0, IF RETARD, 1 = RETARD ; Cref: 0xBC65

 negb

; [In simulation, negative values are converted to varying positive values (Simulation: Negative Spark-L00BB-LOOBD REF.asm):

;
-3.5 deg
$FFF5 = 3.87 degrees
($0b,11d)

;
> -3.5
$FFFA = 2.11

($06,6d)

;
< -3.5
$FFF0
= 5.63

($10,16d)

; way < -3.5
$FFE0 = 11.25

($20,32)]

LBC70: pshb

 ; [LSB of L00BD =FINAL Total SA-REF] ; Cref: 0xBC6A

Subroutine LSEG_A
; [SEGMENT SUBROUTINE]
; ***

; * KNOCK, MAT IAC VAR'S, ETC...

; * >>> SEGMENT A (10), OF MAJOR LOOP EXE <<<

; ***

;--

; [This SubR entered every 100ms, but the code segments here are executed as follows:

;
- Lk Up & Calculate Knock Pct Recovery Rate vs RPM (every other 100ms = effectively every 200ms):

;

- When b4 = 0 for 00-15, 32-47, 64-79, etc., but branch and bypass when = 16-31, 48-63, 80-95, etc.

;
- Test flag to see if allowed to do Forced Knock and Knock Sensor Voltage Tests – Every 100ms

;
- Forced Knock Test and flags – Once per second (when counter = 26)

;
- Every time here = every 100ms (every 16 Minor Loop Counter ticks) = all code past Forced Knock Test and flags

;

- Knock Sensor Voltage Test

;

- MAT Sensor Tests

;

- Idle Speed Time Out IAC steps vs Coolant or MAT

;

- Fuel-related calculations

;--

LSEG_A: ldab *L0000 ; MINOR LOOP COUNTER

 bitb #0x10 ; b4 [0001 0000]
 bne LD6EA ; BR IF b4 [b4=1 for 100ms = 1 pass] (Goes to LD6E2 in ANHT)

;====================== Code BELOW executed every other 100ms pass, so effectively every 200ms ============================
 ; ... else [b4=0 for 100ms = 1 pass]

;--

; LK UP KNOCK PCT RECOVERY RATE vs RPM
; TBL = (DEG/MSEC)/.0225

;--

 ldaa *L0057 ; Scaled RPM/25

 lsra ; DIVIDE BY 2 (SCALE FOR L/U ?)

 lsra ; DIVIDE BY 2

; [Table = Degrees per millisecond: 0.45 at 400 RPM, 0.698 at 4800 RPM]

 ldx #L8213 ; KNOCK PERCENT RECOVERY RATE vs RPM
 jsr LE3D8 ; 2D LOOK UP, NO OFF SET (Is LE3D0 in ANHT)

 ldab *L00C4 ; KNOCK RETARD

 mul ; APPLY RECOVERY RATE [D = Table Factor(A) * Knock Retard Deg(B)]
 adca #0x00 ; ROUND OFF

 nega ; INVERT VALUE of A [Have Negative Recovery Value]
 bne LD6E3 ; IF NO MATH ERROR [BR if Z=0 = Result <> 0] (Goes to LD6DB in ANHT)

 ; else [Z=1; Result = 0]
 ldaa #0xFF ; FORCE MAX VALUE

LD6E3: adda *L00C4 ; KNOCK RETARD [To-be-saved Knock Retard REDUCED by applied Recovery Rate]
 ; CRef: 0xD6DF

; [Per Simulation: KnockRTdRecoveryRate.asm

;
- Anytime Accum A = 0 after the ‘mul’ above, the adca instruction sets Z = 1. Thus, the bne NEVER branches and A = $FF

;
- Then if there is Overflow by adding $FF to a positive Knock Retard, the LSB of the Sum (the overflow) will be in

;
 Accum A with a value of 1 less than the prior pass. Then every time here, Knock Retard will be decremented by 1 to

;
 zero]

 bcs LD6E8 ; BR IF OVERFLOW [UNDERFLOW??? Knock Retard < 0] (Goes to LD6E0 in ANHT)

 ; else [No Underflow]
 clra ; A = 0 (CLEARS KNOCK RETARD)

; [Here, Knock Retard = 0, or = (Prior Knock Retard – Adjustment described above)]

LD6E8: staa *L00C4 ; KNOCK RETARD ; CRef: 0xD6E5

;====================== Code ABOVE executed every other 100ms pass, so effectively every 200ms ============================
;|||||||||||||||||||||||||||||CODE BELOW EXECUTED EVERY TIME HERE (EVERY 100ms)|||
; ================================== ERR 43b Forced Knock Logic Flag Test and Set/Clear ====================================

; [OK to see if criteria met to allow Err 43B test]

; [LD72E below bypasses analysis to determine if Err 43B Forced Knock Test should be conducted]

LD6EA: ldaa L824B ; Error WORD 3 MASK ; CRef: 0xD6CD

 bita #0x10 ; b4 = 1 Err 43 [S/be ‘43B’], KNOCK [1=The test is allowed]
; [If Bit 4 of L824B is NOT set, it means DON’T do Forced (PE) Knock Test; else, see if OK to proceed with test.
; Also, the Knock Sensor voltage test will also be bypassed, so neither of the Err 43 tests (A & B) will be performed.]

 beq LD754 ; BR IF NOT b4 (Err 43 tests FIXED Flag=OFF = NO Test) (Goes to LD74C in ANHT)

 ; ... else (OK to conduct Err 43 tests]
 ldab *L0000 ; MINOR LOOP COUNTER

 cmpb #0x1A ; VAL = 26, OR [0010 0110]
 bne LD72E ; BR IF NOT EQUAL to 26 (Goes to LD726 in ANHT)

;|||||||||||||||||||||||||||||CODE ABOVE EXECUTED EVERY TIME HERE (EVERY 100ms)|||
;------------------------------ Code BELOW executed once per second (once every 10 times here) ----------------------------
 ; ... else

 brset *L0002,#0x40,LD72E ; BR IF Err 43B SPK TEST DONE THIS START UP (Goes to LD726 in ANHT)

 ; ... else

 brset *L0002,#0x01,LD720 ; BR IF Err 43B SPK TST IN WORK (Goes to LD718 in ANHT)

 ; ... else

 brset *L0036,#0x10,LD72E ; BR IF IGNITION IS OFF BIT SET [1=OFF, 0=ON] (Goes to LD726 in ANHT)

 ; ... else

 brclr *L0037,#0x80,LD72E ; BR IF NOT b7, 1 = ENGINE RUNNING [1=Running, 0=NOT] (Goes to LD726 in ANHT)

 ; ... else [Test NOT in Process - See if OK to Start it]
 ldab *L0079 ; MAP for Spd/Dens calc

 cmpb L829D ; If MAP IS LESS THAN 75, DISABLE (Don’t Perform) Err 43B Forced Knock tests

 ; [BR if MAP < Threshold MAP L829D = NO TEST]
 bcs LD72E ; BR IF CARRY SET [If MAP – Threshold < 0] (Goes to LD726 in ANHT)

 ; ... else

 ldab L013B ; SPARK ADVANCE BLEND MULTIPLIER

 incb ; INCR SPARK ADVANCE BLEND MULTIPLIER

 bne LD72E ; BR IF NOT EQUAL [0] [Multiplier can ONLY = 0 if = $FF before increment]

; (Goes to LD726 in ANHT)

 ; ... else [Bypass test & Only check this if SA Blend Mult = 0 VERY RESTRICTIVE]
 ldab *L005D ; FILTERED COOLANT TEMP

 cmpb L829C ; 95c, (203.5*F) Min cool for Err 43B

 ; [BR if Temp <= Threshold Temp L829C = NO TEST]
 bls LD72E ; BR IF LESS THAN (Goes to LD726 in ANHT)

 ; ... else

 bset *L0002,#0x01 ; SET Err 43B SPK TEST IN WORK [Will now begin Test]

 bra LD72E ; BRANCH TO (Goes to LD726 in ANHT)

; ---

; [This merely sets flags for the “Err 43B SA Test <FORCED KNOCK TEST>”.

; Can ONLY get here if the test is ALREADY in-progress {b0 of L0002 set)]

; L01A7 = SPARK ADVANCE FOR ERR 43 [S/be ‘43B’] TEST

;
This variable is loaded 5 lines below LE897 (in the “IAC PID Minor Loop”, which is called by the 6.25ms Timer
; Interrupt). It is either a value of 0 if there is no Forced Knock test for that pass through the code,

;
or it is equal to the prior value +0.3 degrees, up to a maximum of 24.9 degrees advance. It starts at 0 as it is

;
cleared at startup

LD720: ldab L01A7 ; SPARK ADVANCE FOR ERR 43 [S/be ‘43B’] TEST ; CRef: 0xD6FB

 cmpb L829E ; 24.9 Deg MAX S.A. for ERR 43B TEST

 bne LD72E ; BR IF SPK NOT 24.9 Deg (Goes to LD726 in ANHT) [Get more FKnock SA]
 ; else

; [Spark for the Err 43B (FORCED KNOCK) Test (L01A7) has finally reached 24.9 degrees, so:

;
- clear bit that said test was in progress, as it is now over for this start-up

;
- set bits that show that test is done this start-up and that there were no knocks (= “Test Failed” per code comments)

 bclr *L0002,#0x01 ; CLR Err 43B EST TEST IN WORK

 bset *L0002,#0xC0 ; SET b6 & b7 [1100 0000] [Only place b7=No Err 43B Knocks this startup is set]
 ; [b6]=Err 43B SPK TEST DONE THIS START UP

 ; [b7]=Err 43B SPK TEST FAILED THIS START UP [No Err 43B Knocks this startup]
; ================================== ERR 43b Forced Knock Logic Flag Test and Set/Clear ====================================

;------------------------------- Code ABOVE executed once per second (once every 10 times here) ----------------------------
;|||||||||||||||||||||||||CODE BELOW TO END EXECUTED EVERY TIME HERE (EVERY 100 mssec)||||||||||||||||||||||||||||||||||||||
; CHECK FOR KNOCK [SENSOR VOLTAGE] ERROR ERR 44
; [This is the Knock Sensor Voltage Test for Err 43A]

; CHECK SENSOR INTERNAL RESISITOR

; SENSOR WINDOW 1.44 --> 3.62 VDC

;---

; [If get here:

;
- MINOR LOOP COUNTER <> 26, or

;
- Err 43B Spk test already done this loop (b6 of L0002 set)

;
- Ignition is OFF, or

;
- Engine is NOT Running (Key ON?), or

;
- MAP < Threshsold, or

;
- Temp <= Threshold, or

;
- SA for Err 43B Test NOT yet 24.9 deg = Threshold

;
- SA Blend Multiplier NOT 0 (has velue of 0-255]

LD72E: ldaa #0x03 ; SEL A/D CH 4 ; CRef: 0xD6F5,0xD6F7,0xD6FF,0xD703,0xD70C

 ; ,0xD712,0xD719,0xD71E,0xD726

 jsr LE2DC ; A/D MUX READ of U6 (Is LE2D4 in ANHT)

[Reg A contains Voltage data after return from above]

 cmpa L8299 ; 3.62V UPPER VOTLAGE THRESH FOR Err 44 [S/be “Err 43A”]
 bhi LD73D ; BR IF GREATER THAN (Goes to LD735 in ANHT)

 ; ... else

 cmpa L829A ; 1.44V LOWER VOTLAGE THRESH FOR Err 44 [S/be “Err 43A”]

; [Branch in ‘bcc’ below only if Data in L829A is >= the Lower Thresshold = ALL OK; else, error & to LD73D]
 bcc LD74E ; (Goes to LD746 in ANHT)

LD73D: ldaa *L00C3 ; KNOCK SENSOR VDC CHECK TIMER ; CRef: 0xD736

 cmpa L8298 ; 10 Sec TIME REQUIRED

 bhi LD749 ; BR IF GT 10 SEC'S (Goes to LD741 in ANHT)

 ; ... else [<= 10 Seconds]

 inc L00C3 ; INCREMENT KNOCK SENSOR VDC CHECK TIMER

 bra LD754 ; BRANCH TO (Goes to LD74C in ANHT)

; ---

 ; [Knock Sensor Voltage Error FAILURE– Set Bit 5 set]
LD749: bset *L003C,#0x20 ; SET KNOCK[SENSOR] ERROR BIT ; CRef: 0xD742

 bra LD754 ; BRANCH TO (Goes to LD74C in ANHT)

; ---

Simulation - Spark Minor Loop, Low Octane Spark Retard
Low Octane Spark used in Spark Minor Loop

at o SCALE & DO LOW OCTANE S.A. RETARD

Low Octane Knock MAP Table Values (INCREASES with MAP)

 MAP Factor

 0-34 0.000

 35-49 0.500

 50-74 0.750

 75-100 0.966

Low Octane Knock RPM Table Values (DECREASES with RPM)

 RPM Factor

 0-3199 0.966

3200-399 0.800

4000-640 0.750

Max COMBINED factor occurs at < 3200 RPM and MAP > 75 = $FF * $FF = $FE01

 Dec Factor SA

39 Hex Spark Deg 57 0.351563 20.04

4A Hex Spark Deg 74 0.351563 26.02

--
 At Entry At Exit

 L01C0 L01C1 L01C1

 TEMP FINAL Spark FINAL Spark = D

 RPM MAP Mod Mod A B Mod A B

 55 55 E 0 0 39 8 0 31

Dec 2133 33 14 0 0 57 8 0 49

Hex AA AA E 0 0 39 9 0 30

Dec 4266 67 14 0 0 57 9 0 48

Hex FF FF E 0 0 39 A 0 2F

Dec 6400 100 14 0 0 57 10 0 47

Vary L01C1

Hex 55 20 E 55 0 39 0 0 39

Dec 2133 32 14 85 0 57 0 0 57

Maximum MAP and Minimum RPm to maximize the factor multiplication

Hex 55 FF E 55 0 39 E 0 2B

Dec 2133 33 14 85 0 57 14 0 43

Hold L01C1 Constant and Vary L01C0

Hex 55 55 D 55 0 39 7 0 32

Dec 2133 33 13 85 0 57 7 0 50

Hex 55 55 B 55 0 39 6 0 33

Dec 2133 33 11 85 0 57 6 0 51

Hex 55 55 9 55 0 39 5 0 34

Dec 2133 33 9 85 0 57 5 0 52

 At Entry At Exit

 L01C0 L01C1 L01C1

 TEMP FINAL Spark FINAL Spark = D

 RPM MAP Mod Mod A B Mod A B

Hex 55 55 7 55 0 39 4 0 35

Dec 2133 33 7 85 0 57 4 0 53

Hex 55 55 5 55 0 39 3 0 36

Dec 2133 33 5 85 0 57 3 0 54

Hex 55 55 2 55 0 39 1 0 38

Dec 2133 33 2 85 0 57 1 0 56

Hex 55 55 1 55 0 39 1 0 38

Dec 2133 33 1 85 0 57 1 0 56

Hex 55 55 0 55 0 39 0 0 39

Dec 2133 33 0 85 0 57 0 0 57

Hold L01C0 Constant and Vary L01C1

Hex 55 55 E 10 0 39 8 0 31

Dec 2133 33 14 16 0 57 8 0 49

Hex 55 55 E 20 0 39 8 0 31

Dec 2133 33 14 32 0 57 8 0 49

Hex 55 55 E 30 0 39 8 0 31

Dec 2133 33 14 48 0 57 8 0 49

Set L01C0 to its Maximum Value = $0E

Hex 55 55 E 20 0 39 8 0 31

Dec 2133 33 14 32 0 57 8 0 49

Set L01C0 to Lower values

Hex 55 55 A 20 0 39 6 0 33

Dec 2133 33 10 32 0 57 6 0 51

Hex 55 55 5 20 0 39 3 0 36

Dec 2133 33 5 32 0 57 3 0 54

Hex 55 55 1 20 0 39 1 0 38

Dec 2133 33 1 32 0 57 1 0 56

Set RPM Higher, Same MAP Varying L01C0

Hex AA 55 E 20 0 39 6 0 33

Dec 4167 33 14 32 0 57 6 0 51

Set MAP Higher, Same RPM Varying L01C0

Hex 55 AA E 20 0 39 C 0 2D

Dec 4167 67 14 32 0 57 12 0 45

Set RPM and MAP Higher Varying L01C0

Hex AA AA E 20 0 39 9 0 30

Dec 4167 67 14 32 0 57 9 0 48

 At Entry At Exit

 L01C0 L01C1 L01C1

 TEMP FINAL Spark FINAL Spark = D

 RPM MAP Mod Mod A B Mod A B

Using 26.02 degrees for test, versus 20.04 above

Hex 55 55 E 55 0 4A 8 0 42

Dec 2133 33 14 85 0 74 8 0 66

Hex 55 55 9 55 0 4A 5 0 45

Dec 2133 33 9 85 0 74 5 0 69

Hex 55 55 5 55 0 4A 3 0 47

Dec 2133 33 5 85 0 74 3 0 71

Hex 55 55 1 55 0 4A 1 0 49

Dec 2133 33 1 85 0 74 1 0 73

Using 26.02 degrees for test, versus 20.04 above

Hex AA AA E 55 0 4A 9 0 41

Dec 4266 67 14 85 0 74 9 0 65

Hex AA AA 9 55 0 4A 6 0 44

Dec 4266 67 9 85 0 74 6 0 68

Hex AA AA 5 55 0 4A 3 0 47

Dec 4266 67 5 85 0 74 3 0 71

Hex AA AA 1 55 0 4A 1 0 49

Dec 4266 67 1 85 0 74 1 0 73
Simulation – Spark Minor Loop, Negative Total SA-REF
SA Blend Multiplier & Negative Spark - Total SA-REF
Also LOOBB AND LOOBD

$FFF5 = -3.5 Degrees

 One of these 'B'

 pushed to Stack

 A & B will be L00BD

 if L00BD = Negative

 Else

 Accum A Reg X After A*X Multiply

 L00BB LE347 New Total Decimal *

 Blend Total Accum Accum B After SA-REF 0.351563

 Mult SA-REF A B negb L00BD Degrees

negb' only used if L00BB is initially negative

Hex 0 FFF5 FF FE 0B FFF5

Dec 0 65525 255 254 11 65525 3.87

Hex 55 FFF5 FF FE 0B FFF5

Dec 85 65525 255 254 11 65525 3.87

Hex AA FFFA FF FA 6

Dec 170 65530 255 250 6 0 2.11

Hex AA FFF0 FF F0 10

Dec 170 65520 255 240 16 0 5.63

Hex AA FFE0 FF E0 20

Dec 170 65504 255 224 32 0 11.25

New SA-REF always = 0 if Blend Multiplier = 0, so not allowed since = 0 SA

 0 55 0 0 0

Only need 1-way test as multiply will be same regardless of A and X values

Hex 55 55 0 1C 001C

Dec 85 85 0 28 28 9.84

Hex AA 55 0 38 38

Dec 170 85 0 56 56 19.69

Hex FF 55 0 55 55

Dec 255 85 0 85 85 29.88

Mid Values

Hex 7F 7F 0 3F 3F

Dec 127 127 0 63 63 22.15

High above Mid Values

Hex AA AA 0 71 71

Dec 170 170 0 113 113 39.73

Extreme High/Low

Hex 1 FD 0 4 4

Dec 1 253 0 4 4 1.41

Extreme High (Unrealistic as cannot exceed approx 39 deg)

Hex FF FF 0 FE FE

Dec 255 255 0 254 254 89.30
Simulation – LSEG_A, KR Decay
LSEG_A Knock Retard Decay Results

 Begin

 mul =
 Knock Before mul KR * Recv Rate Final KR %

 RPM Retard A B A B
 KR Decay
Dec 800 0 20 0 0 0 0

Hex $20 0 14 0 0 0 0

Dec 800 63 20 63 4 236 58 -8.6%

Hex 20 3F 14 3F 4 EC 3A

Dec 800 126 20 126 9 216 116 -8.6%

Hex 20 7E 14 7E 9 D8 74

Dec 800 127 20 127 9 236 117 -8.5%

Hex 20 7F 14 7F 9 EC 75

Dec 800 128 20 128 10 0 118 -8.5%

Hex 20 80 14 80 A 0 76

Dec 800 223 20 223 17 108 206 -8.3%

Hex 20 DF 14 DF 11 6C CE

Dec 800 255 20 255 19 236 235 -8.5%

Hex 20 FF 14 FF 13 EC EB

Dec 2600 63 24 63 5 232 57 -10.5%

Hex 68 3F 18 3F 5 E8 39

Dec 2600 126 24 126 11 208 114 -10.5%

Hex 68 7E 18 7E B D0 72

Dec 2600 127 24 127 11 232 115 -10.4%

Hex 68 7F 18 7F B E8 73

Dec 2600 128 24 128 12 0 116 -10.3%

Hex 68 80 18 80 C 0 74

Dec 2600 223 24 223 20 232 202 -10.4%

Hex 68 DF 18 DF 14 E8 CA

Dec 2600 255 24 255 23 232 231 -10.4%

Hex 68 FF 18 FF 17 E8 E7

Dec 4200 63 29 63 7 35 56 -12.5%

Hex A8 3F 1D 3F 7 23 38

Dec 4200 126 29 126 14 70 112 -12.5%

Hex A8 7E 1D 7E E 46 70

Dec 4200 127 29 127 14 99 113 -12.4%

Hex A8 7F 1D 7F E 63 71

 Begin

 mul =
 Knock Before mul KR * Recv Rate Final KR %

 RPM Retard A B A B
 KR Decay
Dec 4200 128 29 128 14 128 113 -13.3%

Hex A8 80 1D 80 E 80 71

Dec 4200 223 29 223 25 67 198 -12.6%

Hex A8 DF 1D DF 19 43 C6

Dec 4200 255 29 255 28 227 226 -12.8%

Hex A8 FF 1D FF 1C E3 E2

Using CF as a table value .vs. Stock AUJP of 1F

Dec 4200 128 139 128 69 128 58 -120.7%

Hex A8 80 8B 80 45 80 3A

Using BF as a table value .vs. Stock AUJP of 1F

Dec 4200 128 129 128 64 128 63 -103.2%

Hex A8 80 81 80 40 80 3F

Using 3E as a table value .vs. Stock AUJP of 1F

Dec 4200 128 49 128 24 128 103 -24.3%

Hex A8 80 31 80 18 80 67
LSEG_8 Page 1 of 3
[image: image1.jpg]
LSEG_8 Page 2 of 3
[image: image2.jpg]
LSEG_8 Page 3 of 3
[image: image3.jpg]
Spark Minor Loop – Low Octane Spark Retard Page 1 of 2
[image: image4.jpg]
Spark Minor Loop – Low Octane Spark Retard Page 2 of 2
[image: image5.jpg]
Spark Minor Loop – Negative Spark, Total SA-REF L00BB & L00BD Page 1 of 3

[image: image6.jpg]
Spark Minor Loop – Negative Spark, Total SA-REF L00BB & L00BD Page 2 of 3

[image: image7.jpg]
Spark Minor Loop – Negative Spark, Total SA-REF L00BB & L00BD Page 3 of 3

[image: image8.jpg]
LSEG_A - Page 1 of 2
[image: image9.jpg]
LSEG_A - Page 2 of 2
[image: image10.jpg]
LSEG_A & LSEG_8 (entered every 100ms)

 LSEG_8

 - Logic executed only once per second

 LSEG_A

 - Execute KR Degrees decay logic every other 100ms,� so effectively every 200ms

 - Perform Knock Sensor Voltage (Err 43A) tests every� 100ms

Spark Minor Loop

 - Calculate Total SA-TDC, calculate LOSR� Degrees & possibly retard Total SA-TDC

 - Get KCs & calculate KR Degrees

 - If KCs > 0, adjust bit-flags to dis-� continue Forced Knock (Err 43B) Test

 - Calculate Total SA-REF

 - Retard Total SA-REF if KR Degrees > 0

 - Push LSB of Total SA-REF to stack for� later us in Spark Out logic

LSEG_A

 - If conditions are met to start� Forced Knock Test, set bit-flags

LSEG_8

 - Calculate LOSR “Modifier” for� use in calculating LOSR� Degrees in the Spark Minor � Loop

6.25ms Interrupt Routine

 - Alternately launch Spark & Fuel Minor Loops � every 12.5ms

 - IAC PID Minor Loop increases Forced Knock SA� in 0.3 degree increments to 24.9 degrees max

Page 15

